行业动态
    联系我们

    吉林省优谷网络科技有限公司

    地址:吉林省长春市南关区大马路与上海路交汇处万晟商务港A座738-739室

    电话:0431-87778777

    网址://www.tpmzt.tw

    邮箱:[email protected]

     

     

    优谷科技丨带你探索人脸识别技术发展史


    优谷科技丨带你探索人脸识别技术发展史


    1.什么是人脸识别技术?
    人脸识别技术,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式。简单的来说就是一个让计算机认出你的过程。


    人脸识别技术主要是通过人脸图像特征的提取与对比来进行的。人脸识别系统将提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。

    2.人脸识别技术的发展历程

    早在20世纪50年代,认知科学家就已着手对人脸识别展开研究。20世纪60年代,人脸识别工程化应用研究正式开启。当时的方法主要利用了人脸的几何结构,通过分析人脸器官特征点及其之间的拓扑关系进行辨识。这种方法简单直观,但是一旦人脸姿态、表情发生变化,则精度严重下降。
    1991年,著名的“特征脸”方法第一次将主成分分析和统计特征技术引入人脸识别,在实用效果上取得了长足的进步。这一思路也在后续研究中得到进一步发扬光大,例如,Belhumer成功将Fisher判别准则应用于人脸分类,提出了基于线性判别分析的Fisherface方法。
    由剑桥人脸数据集的特征分解获得的前四个特征向量

    21世纪的前十年,随着机器学习理论的发展,学者们相继探索出了基于遗传算法、支持向量机(Support Vector Machine, SVM)、boosting、流形学习以及核方法等进行人脸识别。 2009年至2012年,稀疏表达(Sparse Representation)因为其优美的理论和对遮挡因素的鲁棒性成为当时的研究热点。
    与此同时,业界也基本达成共识:基于人工精心设计的局部描述子进行特征提取和子空间方法进行特征选择能够取得最好的识别效果。Gabor及LBP特征描述子是迄今为止在人脸识别领域最为成功的两种人工设计局部描述子。这期间,对各种人脸识别影响因子的针对性处理也是那一阶段的研究热点,比如人脸光照归一化、人脸姿态校正、人脸超分辨以及遮挡处理等。也是在这一阶段,研究者的关注点开始从受限场景下的人脸识别转移到非受限环境下的人脸识别。LFW人脸识别公开竞赛在此背景下开始流行,当时最好的识别系统尽管在受限的FRGC测试集上能取得99%以上的识别精度,但是在LFW上的最高精度仅仅在80%左右,距离实用看起来距离颇远。


    2013年,MSRA的研究者首度尝试了10万规模的大训练数据,并基于高维LBP特征和Joint Bayesian方法在LFW上获得了95.17%的精度。这一结果表明:大训练数据集对于有效提升非受限环境下的人脸识别很重要。然而,以上所有这些经典方法,都难以处理大规模数据集的训练场景。
    2014年前后,随着大数据和深度学习的发展,神经网络重受瞩目,并在图像分类、手写体识别、语音识别等应用中获得了远超经典方法的结果。香港中文大学的Sun Yi等人提出将卷积神经网络应用到人脸识别上,采用20万训练数据,在LFW上第一次得到超过人类水平的识别精度,这是人脸识别发展历史上的一座里程碑。
    自此之后,研究者们不断改进网络结构,同时扩大训练样本规模,将LFW上的识别精度推到99.5%以上。如表1所示,我们给出了人脸识别发展过程中一些经典的方法及其在LFW上的精度,一个基本的趋势是:训练数据规模越来越大,识别精度越来越高。
    3.人脸识别技术的主要用途


    (1)人脸识别技术应用于铁路安防系统

    随着技术的进步,人员组织的不断复杂化,铁路安全形势不断面临新的挑战?;鸪灯笔得朴行ё柚沽瞬环ǚ肿咏氤嫡?,但是,目前铁路客运安全检查,基本还是靠安检员来检查票、证、人是否一致,而证件照片往往是多年前的照片,安检员很难辨认,辨别度很低。而人脸识别技术,准确度高、便捷性好,运用于铁路安防系统,将极大的提高安防系统,强化通关,让不法分子无空子可钻。另外,人脸识别技术还能助力强化追溯,支持在超大的人像库中定位查找对象,这将有力协助公安部门侦破案件,或抓捕在逃案犯。
    (2)人脸识别技术应用于教育领域
    近年来,从中考、高考等升学考试,到执业资格、晋级升职等等考试,均不同程度地出现了替考现象,而利用人脸识别技术实现证件内照片特征和实时人脸照片特征比对识别,辨别考生身份,可防止考场替考现象的发生。人脸识别技术还可应用于校园,能有效地对进入校园的可疑人员做到预警。


    (3)人脸识别技术推进于智能城市建设
    随着人类社会的不断发展,未来城市将承载越来越多的人口,为实现城市可持续发展,建设智慧城市已成为当今世界城市发展不可逆转的历史潮流。而在智慧城市的建设过程中,需注重对信息的结构化存储、分析挖掘,人脸的结构化云识别储存是构建整个智慧城市基础数据之一,是智慧城市云储存体系中的不可或缺的一部分。通过智慧城市的高速数据传输链及结构化的数据筛选,可将人脸大数据与智慧城市中其它的大数据之间碰撞出火花,更加凸显出人脸识别“用”的价值。



    如今,人脸识别技术不再仅仅局限在考勤、门禁行业的简单应用,而是凭借其人脸的唯一匹配性以及安全优势,受到高安全性环境应用领域的青睐。而厦门云脉技术近年来致力于人脸识别核心技术的研发与产品化,并推动其与各行业相结合,依托自研的人脸识别算法以及成熟的OCR识别技术,为切实解决不同行业难题,推出了不同的人脸识别解决方案。云脉人脸识别技术识别速度快,精度高,不受一些化妆、眼镜等因素影响。




    COPYRIGHT © 2018 吉林省优谷网络科技有限公司 版权所有 吉ICP备17000340号-1